118 research outputs found

    Should Peak Dose Be Used to Prescribe Spatially Fractionated Radiation Therapy?-A Review of Preclinical Studies.

    Get PDF
    Spatially fractionated radiotherapy (SFRT) is characterized by the coexistence of multiple hot and cold dose subregions throughout the treatment volume. In preclinical studies using single-fraction treatment, SFRT can achieve a significantly higher therapeutic index than conventional radiotherapy (RT). Published clinical studies of SFRT followed by RT have reported promising results for bulky tumors. Several clinical trials are currently underway to further explore the clinical benefits of SFRT. However, we lack the important understanding of the correlation between dosimetric parameters and treatment response that we have in RT. In this work, we reviewed and analyzed this important correlation from previous preclinical SFRT studies. We reviewed studies prior to 2022 that treated animal-bearing tumors with minibeam radiotherapy (MBRT) or microbeam radiotherapy (MRT). Eighteen studies met our selection criteria. Increased lifespan (ILS) relative to control was used as the treatment response. The preclinical SFRT dosimetric parameters analyzed were peak dose, valley dose, average dose, beam width, and beam spacing. We found that valley dose was the dosimetric parameter with the strongest correlation with ILS (p-value < 0.01). For studies using MRT, average dose and peak dose were also significantly correlated with ILS (p-value < 0.05). This first comprehensive review of preclinical SFRT studies shows that the valley dose (rather than the peak dose) correlates best with treatment outcome (ILS)

    Clarification of the low-lying states of Be-9

    Get PDF
    5 pages, 1 table, 2 figures.-- Presented at the International Conference on Finite Fermionic Systems: Nilsson Model 50 years (Lund University, Sweden, June 14–18, 2005).-- PACS nrs.: 23.40.Hc, 27.20.+n, 24.80.+y.A newly developed technique for dealing with three-body decays of broad isolated levels is extended to deal with the broad, overlapping levels found at 2-9 MeV excitation energy in Be-9. The levels are populated through beta-decay of Li-9. The method gives firm evidence for the existence of several levels. Angular correlation studies allow spin values to be assigned.Peer reviewe

    Clarification of the low-lying states of Be-9

    Get PDF
    5 pages, 1 table, 2 figures.-- Presented at the International Conference on Finite Fermionic Systems: Nilsson Model 50 years (Lund University, Sweden, June 14–18, 2005).-- PACS nrs.: 23.40.Hc, 27.20.+n, 24.80.+y.A newly developed technique for dealing with three-body decays of broad isolated levels is extended to deal with the broad, overlapping levels found at 2-9 MeV excitation energy in Be-9. The levels are populated through beta-decay of Li-9. The method gives firm evidence for the existence of several levels. Angular correlation studies allow spin values to be assigned.Peer reviewe

    Preclinical modeling of low energy X-rays radiological burn: Dosimetry study by monte carlo simulations and EPR spectroscopy

    Get PDF
    Interventional radiology has grown considerably over the last decades and become an essential tool for treatment or diagnosis. This technique is mostly beneficial and mastered but accidental overexposure can occur and lead to the appearance of deterministic effects. The lack of knowledge about the radiobiological consequences for the low-energy X-rays used for these practices makes the prognosis very uncertain for the different tissues. In order to improve the radiation protection of patients and better predict the risk of complications, we implemented a new preclinical mouse model to mimic radiological burn in interventional radiology and performed a complete characterization of the dose deposition. A new setup and collimator were designed to irradiate the hind legs of 15 mice at 30 Gy in air kerma at 80 kV. After irradiation, mice tibias were collected to evaluate bone dose by Electron Paramagnetic Resonance (EPR) spectroscopy measurements. Monte Carlo simulations with Geant4 were performed in simplified and voxelized phantoms to characterize the dose deposition in different tissues and evaluate the characteristics of secondary electrons (energy, path, momentum). 30 mice tibias were collected for EPR analysis. An average absorbed dose of 194.0 ± 27.0 Gy was measured in bone initially irradiated at 30 Gy in air kerma. A bone to air conversion factor of 6.5 ± 0.9 was determined. Inter sample and inter mice variability has been estimated to 13.9%. Monte Carlo simulations shown the heterogeneity of the dose deposition for these low X-rays energies and the dose enhancement in dense tissue. The specificities of the secondary electrons were studied and showed the influence of the tissue density on energies and paths. A good agreement between the experimental and calculated bone to air conversion factor was obtained. A new preclinical model allowing to perform radiological burn in interventional radiology-like conditions was implemented. For the development of new preclinical radiobiological model where the exact knowledge of the dose deposited in the different tissues is essential, the complementarity of Monte Carlo simulations and experimental measurements for the dosimetric characterization has proven to be a considerable asset

    Investigating Slit-Collimator-Produced Carbon Ion Minibeams with High-Resolution CMOS Sensors

    Get PDF
    Particle minibeam therapy has demonstrated the potential for better healthy tissue sparing due to spatial fractionation of the delivered dose. Especially for heavy ions, the spatial fractionation could enhance the already favorable differential biological effectiveness at the target and the entrance region. Moreover, spatial fractionation could even be a viable option for bringing ions heavier than carbon back into patient application. To understand the effect of minibeam therapy, however, requires careful conduction of pre-clinical experiments, for which precise knowledge of the minibeam characteristics is crucial. This work introduces the use of high-spatial-resolution CMOS sensors to characterize collimator-produced carbon ion minibeams in terms of lateral fluence distribution, secondary fragments, track-averaged linear energy transfer distribution, and collimator alignment. Additional simulations were performed to further analyze the parameter space of the carbon ion minibeams in terms of beam characteristics, collimator positioning, and collimator manufacturing accuracy. Finally, a new concept for reducing the neutron dose to the patient by means of an additional neutron shield added to the collimator setup is proposed and validated in simulation. The carbon ion minibeam collimator characterized in this work is used in ongoing pre-clinical experiments on heavy ion minibeam therapy at the GSI

    Practice-oriented solutions integrating intraoperative electron irradiation and personalized proton therapy for recurrent or unresectable cancers: Proof of concept and potential for dual FLASH effect

    Get PDF
    BackgroundOligo-recurrent disease has a consolidated evidence of long-term surviving patients due to the use of intense local cancer therapy. The latter combines real-time surgical exploration/resection with high-energy electron beam single dose of irradiation. This results in a very precise radiation dose deposit, which is an essential element of contemporary multidisciplinary individualized oncology.MethodsPatient candidates to proton therapy were evaluated in Multidisciplinary Tumor Board to consider improved treatment options based on the institutional resources and expertise. Proton therapy was delivered by a synchrotron-based pencil beam scanning technology with energy levels from 70.2 to 228.7 MeV, whereas intraoperative electrons were generated in a miniaturized linear accelerator with dose rates ranging from 22 to 36 Gy/min (at Dmax) and energies from 6 to 12 MeV.ResultsIn a period of 24 months, 327 patients were treated with proton therapy: 218 were adults, 97 had recurrent cancer, and 54 required re-irradiation. The specific radiation modalities selected in five cases included an integral strategy to optimize the local disease management by the combination of surgery, intraoperative electron boost, and external pencil beam proton therapy as components of the radiotherapy management. Recurrent cancer was present in four cases (cervix, sarcoma, melanoma, and rectum), and one patient had a primary unresectable locally advanced pancreatic adenocarcinoma. In re-irradiated patients (cervix and rectum), a tentative radical total dose was achieved by integrating beams of electrons (ranging from 10- to 20-Gy single dose) and protons (30 to 54-Gy Relative Biological Effectiveness (RBE), in 10–25 fractions).ConclusionsIndividual case solution strategies combining intraoperative electron radiation therapy and proton therapy for patients with oligo-recurrent or unresectable localized cancer are feasible. The potential of this combination can be clinically explored with electron and proton FLASH beams

    Survival Analysis of F98 Glioma Rat Cells Following Minibeam or Broad-Beam Synchrotron Radiation Therapy

    Get PDF
    Background: In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF), a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT) is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB) synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Methods: Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included) was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. Results
    corecore